Vivado ML Enterprise

Device Support

- Versal[™] AI Core Series: XCVC1902 and XCVC1802
- Versal Prime Series: XCVM1802
- Virtex[®] UltraScale+[™] HBM device: XCVU57P

Install and Licensing

- FlexIm version upgraded to 11.17.2.0
 - Support 64-bit versions of Linux and Windows only
 - Customer using floating license must upgrade licensing utilities to FlexIm 11.17.2.0

IP Integrator

Block Design Container

- 2021.1 is the production release for block design containers.
- Enables Modular Designing for Reusability
- Allows Team Based Designs
- Enables DFX Flow in the Project Mode
- Ability to specify variants for simulation and synthesis
- Address management for BDCs from the Top-level BD

Vivado Store

- Download boards and example designs from GitHub
- 3rd party board partners can contribute to these repositories asynchronously to Vivado releases

IP/IPI Revision Control Improvements

- o Migration of older Vivado projects to new directory structure
- CIPS 3.0
 - IP Re-architecture of CIPS to Hierarchical Model
 - New Modular User Interface

Vivado Text Editor – Sigasi Backend

- Language protocol server supporting:
 - Autocomplete
 - Go to Definition / Find Usages
 - Tool-tips
 - Indent (Range only in VHDL)
 - Syntax Errors and Warnings as you type
 - Code folding
 - Semantic Highlighting
- **IPI Designer Assistance for CIPS & NoC**
 - Enables intuitive Block Automation for NoC & CIPS connectivity
 - Allows easier creation of designs that access all available memory connected to the device or on the board, e.g. DDR and LPDDR

Non-Power of 2 DDR Assignment through Interconnect

 IPI now supports non-power-of-2 (NPOT) address assignments across Address Paths with one or more SmartConnect IP

IP Enhancements

IP Packager Enhancements

- Packager customer experience improvements
 - Connectivity of custom interfaces in IPI / Custom IP
 - XPM memory in the packager
 - Ability to tag files as SV or VHDL-2008 in the packager from package an IP from a directory
- Production release for packaged RTL IP as Vitis kernel
 - Kernel specific DRCs within IP packager
 - Ease of use

Preservation of metadata in these packaged IPs for Vitis kernel usage

IP Enhancements – Data Center

- o PCIe Subsystems
 - Early access support for CPM5, PL PCIE5, and GTYP in Versal Premium CPM4 support in Versal CIPS Verification IP (VIP) for simulation
- Introducing the Algorithmic CAM IP

EA for US+ devices

- o AXI IIC improvement to dynamic read mode function
- SmartConnect support for non-power-of-two address ranges
- XilSEM library API release & documentation in UG643
- SEM IP core device support additions for US+ devices

IP Enhancements – Video and Imaging

- Video and Image Interface IPs
 - CSI TX subsystem adds support for YUV422 10bit DisplayPort Subsystems add support for HDCP2.2/2.3 repeater feature HDMI2.1 (controlled access) adds support for Dynamic HDR, and enhanced gaming features
 - (VRR, FVA, QMS and ALLM)
- New IP: Warp Processor for digitally manipulating images

Supports Keystone distortion, Barrel and Pincushion distortions and Arbitrary distortions Scaling: 0.5x, 1x, 2x; Rotation: -90 to +90 deg Resolutions from 320x240 to 3840x2160, with multichannel support

Input and Output: 8/10/12 bpc YUV, RGB

IP Enhancements - Wired

- 100G Multirate Ethernet Subsystem MRMAC
 - 10G/25G/40G/50G/100G Ethernet NRZ GTM MRMAC 25G Ethernet at –1LP
- IP Enhancements Wireless
 - O-RAN
 - Static/Dynamic Compression/Decompression Function in the IP core (BFP + Modulation)
 New interface to support LTE Section Extension Type 3 information and feed an external LTE precoding block through a single interface
 Support for Beam ID mapping per Slot (in addition to existing per Symbol method)
 Support for DL Section Type 3 messages
 Section Type 0 added to PDxCH BID port
 Max Ethernet packet size increased to 16000 bytes (Support for 9600 byte jumbo frames)

IP Enhancements – Storage

- o NVMeHA now supports Versal and VU23P devices
- NVMeTC now supports Versal and VU23P devices
- ERNIC now supports Versal
 - Native connection to the MRMAC
- AES-XTS available only by special request

IP Enhancements XPM

- XPM_Memory and EMG now support all URAM sizes
- XPM_Memory and EMG now support mixed RAM combinations Use ram_style = "mixed"
- XPM_Memory and XPM_FIFO allow disabling of assertions for broader simulation support DISABLE_XPM_ASSERTIONS define has been added

IP Enhancements - GT Wizard

- Versal GTY Wizard Production
- Versal GTYP Wizard available as EA
- Versal GTM Wizard available as EA

Vitis HLS

- Vitis HLS 2021.1 Production Versal Support
- Versal timing calibration and new controls for DSP block native floating-point operations
- Flushable pipeline option with lower fanout logic (free running pipeline a.k.a. frp)
- Enhanced automatic memory partitioning algorithm and new config_array_partition option
- New "Flow Navigator" in GUI and merged views for synthesis, analysis and debug
- Vitis flow "never ending" streaming kernel support for low runtime overhead
- Function call graph viewer with heatmap for II, latency and DSP/BRAM utilization
- New synthesis report section for BIND_OP and BIND_STORAGE
- Improved data-driven pragma handling for better consistency
- Vivado report and new export IP widgets to pass options to Vivado
- New text report after C synthesis to reflect GUI information

Logic Synthesis

ML model Integration

- Machine Learning models to predict and select optimizations
 - 30% compilation speedup for Versal designs

New Synthesis Features

- XPM_MEMORY supports heterogeneous RAM mapping
 - o Memory array mapped using all device resource types: UltraRAM, Block RAM, and LUTRAM
 - Most efficient use of all resources
 - Use parameter or generic: MEMORY_PRIMITIVE("mixed")
 - Does not support WRITE_MODE = NO_CHANGE
 - VHDL-2008: new support for the to_string() function
 - Log report includes RTL overrides of IP generics and parameters

Implementation

Machine Learning models in implementation

- Predict routing congestion and route delays
- Better correlation between placement-based estimation and actual routing à better Fmax and reduced compile times

opt_design -resynth_remap

New timing-driven logic cone resynthesis optimizations that reduce logic levels

Manually retime LUTs and registers during placement with XDC properties

- PSIP_RETIMING_BACKWARD
- PSIP_RETIMING_FORWARD

New Features for Versal Devices

- Calibrated Deskew adjusts the clock network delay taps before device startup to further minimize skew
- Automatic pipeline insertion improves clock speed by on paths...
 - Between PL and NoC and between PL and AI Engines
 - Available both from the AXI Regslice IP and by using auto-pipeline properties
 - Adds latency to pipelined paths
- Elastic pipelines from shift register primitives (SRLs)
 - o pipelines are built around an SRL which holds excess pipeline stages
 - Placer builds the ideal pipeline based on source and destination placement
 - Stages can be pulled out of the SRL to cover a wider distance
 - Stages are absorbed by the SRL to shrink the pipeline for shorter distances
 - Preserves latency on pipelined paths

Intelligent Design Runs:

- Intelligent Design Runs (IDR) gives pushbutton access to a new, powerful automated timing closure flow
 - report_qor_suggestions
 - ML strategy prediction
 - Incremental Compile
- Available in Vivado projects and is launched by a right-click menu selection of an implementation run that fails timing. The IDR Reports dashboard details the flow progress and provides hyperlinks to the related reports. A great option for users with timing closure difficulty
 - \circ QoR gain average >10%

Report QoR Suggestions (RQS) Improvements

- DFX-aware QoR suggestions
 - Suggestions given only on DFX modules when static is locked
 - No suggestions that disrupt DFX boundaries
 - Synthesis suggestions correctly scoped to global or out-of-context runs
 - Assessment included in the interactive report_qor_suggestions (RQS) GUI report

Methodology Violations in Timing Reports

- Timing reports now include Report Methodology summary
 - o Draws attention to methodology violations
 - Neglected methodology violations may cause timing failures
- Includes the summary of the methodology violations from the latest report_methodology run • Methodology violations summary stored with design checkpoint

New Constraint Reporting Features

- report_constant_path: new command to identify the source of constant logic values observed on cells and pins
 - report_constant_path <pins_or_cells_objects>
 - o report_constant_path -of_objects [get_constant_path <pins_or_cells_objects>]

Dynamic Function eXchange

DFX for Versal

- Versal DFX flows available with production status
 - Compile DFX designs from block designs to device image creation
 - Use Vivado IPI Block Design Containers (BDC) for creating Versal DFX designs
- Leverage DFX IP in Versal just as with UltraScale, UltraScale+
 - o DFX Decoupler IP, DFX AXI Shutdown Manager IP to isolate non-NoC interfaces
- All programmable logic is partially reconfigurable
 - From NoC to clocks to hard blocks
- AIE full array Dynamic Function eXchange support
 - Supported through Vitis platform flows

BDC for DFX

- Block Design Containers (BDC) for DFX released in IP Integrator
 - Supports all architectures, critical for Versal
- Place a block design within a block design to create and process DFX designs
 - UG947 shows IPI BDC tutorials for Zynq UltraScale+ and Versal devices
 - More DFX tutorials to be posted on GitHub

Classic SoC Boot Flow Using DFX

- Classic SoC Boot flow available for Versal designs
 - Enables users to quickly boot their DDR-based processing subsystem and memory to run Linux prior to loading the programmable logic
 - Separate programming events in Versal to emulate the Zynq boot flow
 - Auto-Pblock generation used in this flow
 - Not compatible with CPM

Versal Tandem configuration for CPM4

- Tandem PROM and Tandem PCIe for CPM4 available
- Users who require 120ms configuration of a PCIe end point now have a selection in the CIPS customization GUI to select the Tandem Configuration mode
 - Tandem PROM load both stages from flash
 - Tandem PCIe load stage 1 from flash,
 - stage 2 over PCIe link via DMA
 - None standard boot

Abstract Shell Support for Nested DFX Designs in UltraScale+

- Subdivide your Reconfigurable Partition (RP) into multiple nested RPs using Nested DFX (pr_subdivide)
- Create Abstract Shell for each nested RP (write_abstract_shell)
- Accelerate the implementation of each Nested RP by using its Abstract Shell

Simulation

VHDL-2008 Enhancements

- Unconstrained Arrays
- Conditional Operators
- Unary Reduction Operators
- Code Coverage Support
 - write_xsim_coverage command support for writing intermediate coverage database

Hardware Debug

SmartLynq+ module

- Optimized for Versal High-Speed Debug Port (HSDP)
 - Faster device programming & Memory access
 - High speed data upload & download
 - Data storage: 14GB DDR memory on module
- High-Speed Debug Port (HSDP) Support
 - Support for connecting to Aurora based HSDP over USB-C connector
- PC4 and USB based JTAG
- Serial UART support

ChipScope

- Open-Source Python API for ChipScope
 - o Control and communicate with Versal Device and Debug Cores
 - Vivado not required to use just need a PDI/LTX
 - \circ Benefits
 - Build custom debug interfaces Interface with python ecosystem